Scientific Method

What is the Scientific Method?

 The scientific method is a logical, problem solving technique.

Steps of the Scientific Method

- Observation
- Problem Statement
- Hypothesis Statement
- Experiment / Data Collection
- Conclusion Statement

Observation

 The scientific method begins with observation

- An observation is a visible or provable fact.
- An *inference* is an opinion, or conclusion, based on observed facts.

Observation vs. Inference

"My word! ... That one came just too close for comfort, if you ask me."

Observation:

Observation:

Inference:

Observation vs. Inference

Observation:

Observation:

Inference:

Problem Statement

- Careful observations lead to questions that arise.
- A problem statement is a question that compares variables.
 - Example: Does the drop height affect the bounce height of a superball?

What are Variables?

 A variable is something that changes.

There are independent variables and dependent variables.

What is an Independent Variable?

An independent variable is a variable that changes unrelated to other factors; a variable we manipulate, or change, on purpose.

An independent variable is the variable whose value we know before we start an experiment.

Example: Does the drop height affect the bounce height of a superball?

We know the drop heights we will use.

What is a Dependent Variable?

A dependent variable is a variable that changes depending on some other factors; the variable we are trying to find out.

The dependent variable is the variable whose value we do not know before we start an experiment.

Example: Does the drop height affect the bounce height of a superball?

We do not know the bounce heights before we start.

What is a Constant?

A constant is a variable that does not change for the duration of an experiment; a value that remains the same.

Example: Does the drop height affect the bounce height of a superball?

The superball does not change during the experiment.

Hypothesis Statement

- A hypothesis statement is a statement that expresses the expected answer to the problem statement;
 - what you think the results of the experiment will show.
- Example: If a superball is dropped from increasing heights then the bounce heights will also increase because...

Experiment

- An experiment is a planned way to test a hypothesis and find out the answer to the problem statement.
- An experiment is a way to collect data and determine the value of the dependent variable.
- An experiment compares the independent variable to the dependent variable.
- An experiment can only test one dependent variable at a time.

Conclusion Statement

 A conclusion statement is a statement that presents the findings of the experiment, what the data shows, and states if the hypothesis was correct (supported) or incorrect (negated).

Why Do We Use Graphs?

- Graphs help us visualize numerical data.
- There are several different types of graphs:
 - Bar graphs
 - Pie graphs
 - Line graphs

Bar Graphs

 Bar graphs are used to show a comparison of multiple objects.

Pie Graphs

 Pie graphs are used to compare the parts of a whole.

Line Graphs

Line graphs
are used to
show the
relationship
between
variables.

Types of Relationships (between variables)

Indirect: as x increases y decreases

Direct: as x increases y increases

Constant: as x increases y remains the same